资源算法chainer-Variational-AutoEncoder

chainer-Variational-AutoEncoder

2019-09-10 | |  122 |   0 |   0

chainer-Variational-AutoEncoder

Variational Auto Encoder implemented by Chainer

Requirement

  • Chainer

M1 model

Train

Start training the model using train_VAE.py, for example

$python train_VAE.py

Generate data

You can generate data by giving a latent space vector. For example,

$python generated.py --model [model/created_model.pkl]

M2 model

Train

Start training the model using train_VAE_yz_x.py, for example

$python train_VAE_yz_x.py

Generate data set giving 1 sample input.

You can generate data set by giving a sample input. For example,

$python generated_yz_x.py --model [model/created_model.pkl]

Flying through latent space of M2 model

To generate movies of flying through latent-space of the M2 model, run:

$python run_flying.py --dataset [dataset] --model [model/created_model.pkl] --output_file [output file name]

where dataset is 'mnist' or 'svhn', and output_file is the filename to save the movie file to.

NOTE: This script requires ffmpeg to be installed.

NOTE: Unzip sample model saved in model folder

ToDo

  • GPU implementation

Reference

  • Justin Bayer's Chainer based Variational Auto Encoder http://nbviewer.ipython.org/gist/duschendestroyer/a41fcab5f7f9ffa45387

  • http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf

  • https://github.com/dpkingma/nips14-ssl

  • http://www.slideshare.net/beam2d/semisupervised-learning-with-deep-generative-models


上一篇:improved-gan

下一篇:Hierarchical Attention Network for Document Classification

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...