资源论文Prediction of Mild Cognitive Impairment Conversion Using Auxiliary Information

Prediction of Mild Cognitive Impairment Conversion Using Auxiliary Information

2019-10-10 | |  57 |   44 |   0
Abstract In this paper, we propose a new feature selection method to exploit the issue of High Dimension Low Sample Size (HDLSS) for the prediction of Mild Cognitive Impairment (MCI) conversion. Specially, by regarding the Magnetic Resonance Imaging (MRI) information of MCI subjects as the target data, this paper proposes to integrate auxiliary information with the target data in a unified feature selection framework for distinguishing progressive MCI (pMCI) subjects from stable MCI (sMCI) subjects, i.e., the MCI conversion classification for short in this paper, based on their MRI information. The auxiliary information includes the Positron Emission Tomography (PET) information of the target data, the MRI information of Alzheimer’s Disease (AD) subjects and Normal Control (NC) subjects, and the ages of the target data and the AD and NC subjects. As a result, the proposed method jointly selects features from the auxiliary data and the target data by taking into account the influence of outliers and aging of these two kinds of data. Experimental results on the public data of Alzheimer’s Disease Neuroimaging Initiative (ADNI) verified the effectiveness of our proposed method, compared to three state-of-the-art feature selection methods, in terms of four classification evaluation metrics

上一篇:On Privacy Protection of Latent Dirichlet Allocation Model Training

下一篇:ProNE: Fast and Scalable Network Representation Learning

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...