资源论文A Quantum-inspired Classical Algorithm for Separable Non-negative Matrix Factorization

A Quantum-inspired Classical Algorithm for Separable Non-negative Matrix Factorization

2019-10-10 | |  85 |   43 |   0
Abstract Non-negative Matrix Factorization (NMF) asks to decompose a (entry-wise) non-negative matrix into the product of two smaller-sized nonnegative matrices, which has been shown intractable in general. In order to overcome this issue, separability assumption is introduced which assumes all data points are in a conical hull. This assumption makes NMF tractable and is widely used in text analysis and image processing, but still impractical for huge-scale datasets. In this paper, inspired by recent development on dequantizing techniques, we propose a new classical algorithm for separable NMF problem. Our new algorithm runs in polynomial time in the rank and logarithmic in the size of input matrices, which achieves an exponential speedup in the low-rank setting

上一篇:Towards Robust ResNet: A Small Step but a Giant Leap

下一篇:ATTAIN: Attention-based Time-Aware LSTM Networks for Disease Progression Modeling

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...