资源论文DeepInspect: A Black-box Trojan Detection and Mitigation Framework for Deep Neural Networks

DeepInspect: A Black-box Trojan Detection and Mitigation Framework for Deep Neural Networks

2019-10-10 | |  62 |   32 |   0
Abstract Deep Neural Networks (DNNs) are vulnerable to Neural Trojan (NT) attacks where the adversary injects malicious behaviors during DNN training. This type of ‘backdoor’ attack is activated when the input is stamped with the trigger pattern specified by the attacker, resulting in an incorrect prediction of the model. Due to the wide application of DNNs in various critical fields, it is indispensable to inspect whether the pre-trained DNN has been trojaned before employing a model. Our goal in this paper is to address the security concern on unknown DNN to NT attacks and ensure safe model deployment. We propose DeepInspect, the first black-box Trojan detection solution with minimal prior knowledge of the model. DeepInspect learns the probability distribution of potential triggers from the queried model using a conditional generative model, thus retrieves the footprint of backdoor insertion. In addition to NT detection, we show that DeepInspect’s trigger generator enables effective Trojan mitigation by model patching. We corroborate the effectiveness, efficiency, and scalability of DeepInspect against the state-of-the-art NT attacks across various benchmarks. Extensive experiments show that DeepInspect offers superior detection performance and lower runtime overhead than the prior work

上一篇:Combining ADMM and the Augmented Lagrangian Method for Efficiently Handling Many Constraints

下一篇:Efficient Non-parametric Bayesian Hawkes Processes

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...