资源论文Not All FPRASs are Equal: Demystifying FPRASs for DNF-Counting (Extended Abstract) ?†

Not All FPRASs are Equal: Demystifying FPRASs for DNF-Counting (Extended Abstract) ?†

2019-10-10 | |  47 |   22 |   0
Abstract The problem of counting the number of solutions of a DNF formula, also called #DNF, is a fundamental problem in AI with wide-ranging applications. Owing to the intractability of the exact variant, efforts have focused on the design of approximate techniques. Consequently, several Fully Polynomial Randomized Approximation Schemes (FPRASs) based on Monte Carlo techniques have been proposed. Recently, it was discovered that hashing-based techniques too lend themselves to FPRASs for #DNF. Despite significant improvements, the complexity of the hashing-based FPRAS is still worse than that of the best Monte Carlo FPRAS by polylog factors. Two questions were left unanswered in previous works: Can the complexity of the hashing-based techniques be improved? How do these approaches compare empirically? In this paper, we first propose a new search procedure for the hashing-based FPRAS that removes the polylog factors from its time complexity. We then present the first empirical study of runtime behavior of different FPRASs for #DNF, which produces a nuanced picture. We observe that there is no single best algorithm for all formulas and that the algorithm with one of the worst time complexities solves the largest number of benchmarks

上一篇:Multiagent Decision Making and Learning in Urban Environments

下一篇:On Constrained Open-World Probabilistic Databases

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...