资源论文Towards Discriminative Representation Learning for Speech Emotion Recognition

Towards Discriminative Representation Learning for Speech Emotion Recognition

2019-10-10 | |  75 |   98 |   0
Abstract In intelligent speech interaction, automatic speech emotion recognition (SER) plays an important role in understanding user intention. While sentimental speech has different speaker characteristics but similar acoustic attributes, one vital challenge in SER is how to learn robust and discriminative representations for emotion inferring. In this paper, inspired by human emotion perception, we propose a novel representation learning component (RLC) for SER system, which is constructed with Multihead Self-attention and Global Context-aware Attention Long Short-Term Memory Recurrent Neutral Network (GCA-LSTM). With the ability of Multi-head Self-attention mechanism in modeling the element-wise correlative dependencies, RLC can exploit the common patterns of sentimental speech features to enhance emotion-salient information importing in representation learning. By employing GCA-LSTM, RLC can selectively focus on emotion-salient factors with the consideration of entire utterance context, and gradually produce discriminative representation for emotion inferring. Experiments on public emotional benchmark database IEMOCAP and a tremendous realistic interaction database demonstrate the outperformance of the proposed SER framework, with 6.6% to 26.7% relative improvement on unweighted accuracy compared to state-of-the-art techniques

上一篇:The Price of Local Fairness in Multistage Selection?

下一篇:Learning in the Machine: Random Backpropagation and the Deep Learning Channel (Extended Abstract)?

用户评价
全部评价

热门资源

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...