资源论文Boosting Self-Supervised Learning via Knowledge Transfer

Boosting Self-Supervised Learning via Knowledge Transfer

2019-10-11 | |  47 |   42 |   0
Abstract In self-supervised learning, one trains a model to solve a so-called pretext task on a dataset without the need for human annotation. The main objective, however, is to transfer this model to a target domain and task. Currently, the most effective transfer strategy is fine-tuning, which restricts one to use the same model or parts thereof for both pretext and target tasks. In this paper, we present a novel framework for self-supervised learning that overcomes limitations in designing and comparing different tasks, models, and data domains. In particular, our framework decouples the structure of the self-supervised model from the final task-specific fine-tuned model. This allows us to: 1) quantitatively assess previously incompatible models including handcrafted features; 2) show that deeper neural network models can learn better representations from the same pretext task; 3) transfer knowledge learned with a deep model to a shallower one and thus boost its learning. We use this framework to design a novel self-supervised task, which achieves state-of-the-art performance on the common benchmarks in PASCAL VOC 2007, ILSVRC12 and Places by a significant margin. Our learned features shrink the mAP gap between models trained via self-supervised learning and supervised learning from 5.9% to 2.6% in object detection on PASCAL VOC 2007

上一篇:BPGrad: Towards Global Optimality in Deep Learning via Branch and Pruning

下一篇:Boosting Domain Adaptation by Discovering Latent Domains

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...