资源论文Deep Learning under Privileged Information Using Heteroscedastic Dropout

Deep Learning under Privileged Information Using Heteroscedastic Dropout

2019-10-12 | |  58 |   45 |   0
Abstract Unlike machines, humans learn through rapid, abstract model-building. The role of a teacher is not simply to hammer home right or wrong answers, but rather to provide intuitive comments, comparisons, and explanations to a pupil. This is what the Learning Under Privileged Information (LUPI) paradigm endeavors to model by utilizing extra knowledge only available during training. We propose a new LUPI algorithm specifically designed for Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). We propose to use a heteroscedastic dropout (i.e. dropout with a varying variance) and make the variance of the dropout a function of privileged information. Intuitively, this corresponds to using the privileged information to control the uncertainty of the model output. We perform experiments using CNNs and RNNs for the tasks of image classification and machine translation. Our method significantly increases the sample efficiency during learning, resulting in higher accuracy with a large margin when the number of training examples is limited. We also theoretically justify the gains in sample efficiency by providing a generalization error bound decreasing with O( 1n ), where n is the number of training examples, in an oracle case.

上一篇:Deep Marching Cubes: Learning Explicit Surface Representations

下一篇:Deep Learning of Graph Matching

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...