资源论文Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation

Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation

2019-10-12 | |  47 |   37 |   0
Abstract Facial age estimation from a face image is an important yet very challenging task in computer vision, since humans with different races and/or genders, exhibit quite different patterns in their facial aging processes. To deal with the influence of race and gender, previous methods perform age estimation within each population separately. In practice, however, it is often very difficult to collect and label suf- ficient data for each population. Therefore, it would be helpful to exploit an existing large labeled dataset of one (source) population to improve the age estimation performance on another (target) population with only a small labeled dataset available. In this work, we propose a Deep Cross-Population (DCP) age estimation model to achieve this goal. In particular, our DCP model develops a twostage training strategy. First, a novel cost-sensitive multitask loss function is designed to learn transferable aging features by training on the source population. Second, a novel order-preserving pair-wise loss function is designed to align the aging features of the two populations. By doing so, our DCP model can transfer the knowledge encoded in the source population to the target population. Extensive experiments on the two of the largest benchmark datasets show that our DCP model outperforms several strong baseline methods and many state-of-the-art methods.

上一篇:Deep Cross-media Knowledge Transfer

下一篇:Deep Cauchy Hashing for Hamming Space Retrieval

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...