资源论文Geometry Aware Constrained Optimization Techniques for Deep Learning?

Geometry Aware Constrained Optimization Techniques for Deep Learning?

2019-10-12 | |  80 |   43 |   0
Abstract In this paper, we generalize the Stochastic Gradient Descent (SGD) and RMSProp algorithms to the setting of Riemannian optimization. SGD is a popular method for large scale optimization. In particular, it is widely used to train the weights of Deep Neural Networks. However, gradients computed using standard SGD can have large variance, which is detrimental for the convergence rate of the algorithm. Other methods such as RMSProp and ADAM address this issue. Nevertheless, these methods cannot be directly applied to constrained optimization problems. In this paper, we extend some popular optimization algorithm to the Riemannian (constrained) setting. We substantiate our proposed extensions with a range of relevant problems in machine learning such as incremental Principal Component Analysis, computating the Riemannian centroids of SPD matrices, and Deep Metric Learning. We achieve competitive results against the state of the art for fine-grained object recognition datasets

上一篇:Gibson Env: Real-World Perception for Embodied Agents

下一篇:Generalized Zero-Shot Learning via Synthesized Examples

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...