资源论文ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAM

ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAM

2019-10-12 | |  65 |   40 |   0
Abstract Modern visual-inertial SLAM (VI-SLAM) achieves higher accuracy and robustness than pure visual SLAM, thanks to the complementariness of visual features and inertial measurements. However, jointly using visual and inertial measurements to optimize SLAM objective functions is a problem of high computational complexity. In many VISLAM applications, the conventional optimization solvers can only use a very limited number of recent measurements for real time pose estimation, at the cost of suboptimal localization accuracy. In this work, we renovate the numerical solver for VI-SLAM. Compared to conventional solvers, our proposal provides an exact solution with significantly higher computational efficiency. Our solver allows us to use remarkably larger number of measurements to achieve higher accuracy and robustness. Furthermore, our method resolves the global consistency problem that is unaddressed by many state-of-the-art SLAM systems: to guarantee the minimization of re-projection function and inertial constraint function during loop closure. Experiments demonstrate our novel formulation renders lower localization error and more than 10x speedup compared to alternatives. We release the source code of our implementation to benefit the community

上一篇:Importance Weighted Adversarial Nets for Partial Domain Adaptation

下一篇:Hybrid Camera Pose Estimation

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...