资源论文High-order Tensor Regularization with Application to Attribute Ranking

High-order Tensor Regularization with Application to Attribute Ranking

2019-10-12 | |  39 |   51 |   0
Abstract When learning functions on manifolds, we can improve performance by regularizing with respect to the intrinsic manifold geometry rather than the ambient space. However, when regularizing tensor learning, calculating the derivatives along this intrinsic geometry is not possible, and so existing approaches are limited to regularizing in Euclidean space. Our new method for intrinsically regularizing and learning tensors on Riemannian manifolds introduces a surrogate object to encapsulate the geometric characteristic of the tensor. Regularizing this instead allows us to learn non-symmetric and high-order tensors. We apply our approach to the relative attributes problem, and we demonstrate that explicitly regularizing high-order relationships between pairs of data points improves performance

上一篇:Human Pose Estimation with Parsing Induced Learner

下一篇:HATS: Histograms of Averaged Time Surfaces for Robust Event-based Object Classification

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...