资源论文Learning Pose Specific Representations by Predicting Different Views

Learning Pose Specific Representations by Predicting Different Views

2019-10-12 | |  54 |   41 |   0
Abstract The labeled data required to learn pose estimation for articulated objects is difficult to provide in the desired quantity, realism, density, and accuracy. To address this issue, we develop a method to learn representations, which are very specific for articulated poses, without the need for labeled training data. We exploit the observation that the object pose of a known object is predictive for the appearance in any known view. That is, given only the pose and shape parameters of a hand, the hand’s appearance from any viewpoint can be approximated. To exploit this observation, we train a model that – given input from one view – estimates a latent representation, which is trained to be predictive for the appearance of the object when captured from another viewpoint. Thus, the only necessary supervision is the second view. The training process of this model reveals an implicit pose representation in the latent space. Importantly, at test time the pose representation can be inferred using only a single view. In qualitative and quantitative experiments we show that the learned representations capture detailed pose information. Moreover, when training the proposed method jointly with labeled and unlabeled data, it consistently surpasses the performance of its fully supervised counterpart, while reducing the amount of needed labeled samples by at least one order of magnitude.

上一篇:Learning Steerable Filters for Rotation Equivariant CNNs

下一篇:Learning Intelligent Dialogs for Bounding Box Annotation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...