资源论文Learning Globally Optimized Object Detector via Policy Gradient

Learning Globally Optimized Object Detector via Policy Gradient

2019-10-12 | |  70 |   35 |   0
Abstract In this paper, we propose a simple yet effective method to learn globally optimized detector for object detection, which is a simple modification to the standard cross-entropy gradient inspired by the REINFORCE algorithm. In our approach, the cross-entropy gradient is adaptively adjusted according to overall mean Average Precision (mAP) of the current state for each detection candidate, which leads to more effective gradient and global optimization of detection results, and brings no computational overhead. Benefiting from more precise gradients produced by the global optimization method, our framework significantly improves state-of-the-art object detectors. Furthermore, since our method is based on scores and bounding boxes without modification on the architecture of object detector, it can be easily applied to off-the-shelf modern object detection frameworks

上一篇:Learning Intelligent Dialogs for Bounding Box Annotation

下一篇:Learning Generative ConvNets via Multi-grid Modeling and Sampling

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...