资源论文Non-blind Deblurring: Handling Kernel Uncertainty with CNNs

Non-blind Deblurring: Handling Kernel Uncertainty with CNNs

2019-10-14 | |  43 |   36 |   0
Abstract Blind motion deblurring methods are primarily responsible for recovering an accurate estimate of the blur kernel. Non-blind deblurring (NBD) methods, on the other hand, attempt to faithfully restore the original image, given the blur estimate. However, NBD is quite susceptible to errors in blur kernel. In this work, we present a convolutional neural network-based approach to handle kernel uncertainty in non-blind motion deblurring. We provide multiple latent image estimates corresponding to different prior strengths obtained from a given blurry observation in order to exploit the complementarity of these inputs for improved learning. To generalize the performance to tackle arbitrary kernel noise, we train our network with a large number of real and synthetic noisy blur kernels. Our network mitigates the effects of kernel noise so as to yield detail-preserving and artifact-free restoration. Our quantitative and qualitative evaluations on benchmark datasets demonstrate that the proposed method delivers state-of-the-art results. To further underscore the benefits that can be achieved from our network, we propose two adaptations of our method to improve kernel estimates, and image deblurring quality, respectively.

上一篇:Now You Shake Me: Towards Automatic 4D Cinema

下一篇:MX-LSTM: mixing tracklets and vislets to jointly forecast trajectories and head poses

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...