资源论文Hyperparameter Optimization for Tracking with Continuous Deep Q-Learning

Hyperparameter Optimization for Tracking with Continuous Deep Q-Learning

2019-10-14 | |  85 |   39 |   0
Abstract Hyperparameters are numerical presets whose values are assigned prior to the commencement of the learning process. Selecting appropriate hyperparameters is critical for the accuracy of tracking algorithms, yet it is difficult to determine their optimal values, in particular, adaptive ones for each specific video sequence. Most hyperparameter optimization algorithms depend on searching a generic range and they are imposed blindly on all sequences. Here, we propose a novel hyperparameter optimization method that can find optimal hyperparameters for a given sequence using an action-prediction network leveraged on Continuous Deep Q-Learning. Since the common state-spaces for object tracking tasks are significantly more complex than the ones in traditional control problems, existing Continuous Deep Q-Learning algorithms cannot be directly applied. To overcome this challenge, we introduce an efficient heuristic to accelerate the convergence behavior. We evaluate our method on several tracking benchmarks and demonstrate its superior performance

上一篇:High-speed Tracking with Multi-kernel Correlation Filters

下一篇:Learning Attentions: Residual Attentional Siamese Network for High Performance Online Visual Tracking

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...