资源算法Deep Networks for Earth Observation

Deep Networks for Earth Observation

2019-09-11 | |  137 |   0 |   0

These models have been trained to perform semantic segmentation on aerial images, as proposed by Audebert et al. (2016). The available models are based on the SegNet architecture (Kendall et al., 2015). The project repository contains the model definitions and pre-trained weights on the city of Vaihingen.

latex<br/>@inproceedings{audebert_semantic_2016,<br/> address = {Taipei, Taiwan},<br/> title = {Semantic {Segmentation} of {Earth} {Observation} {Data} {Using} {Multimodal} and {Multi}-scale {Deep} {Networks}},<br/> url = {https://hal.archives-ouvertes.fr/hal-01360166},<br/> urldate = {2016-10-13},<br/> booktitle = {Asian {Conference} on {Computer} {Vision} ({ACCV}16)},<br/> author = {Audebert, Nicolas and Le Saux, Bertrand and Lefèvre, Sébastien},<br/> month = nov,<br/> year = {2016},<br/> keywords = {computer vision, data fusion, Earth observation, Neural networks, remote sensing},<br/>}<br/>
[PDF]
[Project]

无链接

上一篇:Cascaded Fully Convolutional Networks for Biomedical Image Segmentation

下一篇:Supervised Learning of Semantics-Preserving Hash via Deep Convolutional Neural Networks

用户评价
全部评价

热门资源

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • ETD_cataloguing_a...

    ETD catalouging project using allennlp

  • allennlp_extras

    allennlp_extras Some utilities build on top of...

  • allennlp-dureader

    An Apache 2.0 NLP research library, built on Py...

  • honk-honk-motherf...

    honk-honk-motherfucker