资源论文Quantization of Fully Convolutional Networks for Accurate Biomedical Image Segmentation

Quantization of Fully Convolutional Networks for Accurate Biomedical Image Segmentation

2019-10-17 | |  71 |   38 |   0
Abstract With pervasive applications of medical imaging in health-care, biomedical image segmentation plays a central role in quantitative analysis, clinical diagnosis, and medical intervention. Since manual annotation suffers limited reproducibility, arduous efforts, and excessive time, automatic segmentation is desired to process increasingly larger scale histopathological data. Recently, deep neural networks (DNNs), particularly fully convolutional networks (FCNs), have been widely applied to biomedical image segmentation, attaining much improved performance. At the same time, quantization of DNNs has become an active research topic, which aims to represent weights with less memory (precision) to considerably reduce memory and computation requirements of DNNs while maintaining acceptable accuracy. In this paper, we apply quantization techniques to FCNs for accurate biomedical image segmentation. Unlike existing literatures on quantization which primarily targets memory and computation complexity reduction, we apply quantization as a method to reduce over- fitting in FCNs for better accuracy. Specifically, we focus on a state-of-the-art segmentation framework, suggestive annotation [26], which judiciously extracts representative annotation samples from the original training dataset, obtaining an effective small-sized balanced training dataset. We develop two new quantization processes for this framework: (1) suggestive annotation with quantization for highly representative training samples, and (2) network training with quantization for high accuracy. Extensive experiments on the MICCAI Gland dataset show that both quantization processes can improve the segmentation performance, and our proposed method exceeds the current state-of-the-art performance by up to 1%. In addition, our method has a reduction of up to 6.4x on memory usage

上一篇:Probabilistic Plant Modeling via Multi-View Image-to-Image Translation

下一篇:Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...