资源算法SRGAN

SRGAN

2019-08-19 | |  205 |   0 |   0

Super Resolution Examples

We run this script under TensorFlow 1.4 and the TensorLayer 1.8.0+.

SRGAN Architecture

TensorFlow Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

model.jpeg

Results

SRGAN_Result2.png

SRGAN_Result3.png

Prepare Data and Pre-trained VGG


    1. You need to download the pretrained VGG19 model in here as tutorial_vgg19.py show.


    1. You need to have the high resolution images for training.

    2. In this experiment, I used images from DIV2K - bicubic downscaling x4 competition, so the hyper-paremeters in config.py (like number of epochs) are seleted basic on that dataset, if you change a larger dataset you can reduce the number of epochs.

    3. If you dont want to use DIV2K dataset, you can also use Yahoo MirFlickr25k, just simply download it using train_hr_imgs = tl.files.load_flickr25k_dataset(tag=None) in main.py.

    4. If you want to use your own images, you can set the path to your image folder via config.TRAIN.hr_img_path in config.py.

Run

config.TRAIN.img_path = "your_image_folder/"
  • Start training.

python main.py
python main.py --mode=evaluate

Reference

  • [1] [Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network](https://arxiv.org/abs/1609.04802)

  • [2] [Is the deconvolution layer the same as a convolutional layer ?](https://arxiv.org/abs/1609.07009)

Author

License

  • For academic and non-commercial use only.

  • For commercial use, please contact tensorlayer@gmail.com.


上一篇:DeepOSM

下一篇:YOLOv2

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • vsepp_tensorflow

    Improving Visual-Semantic Embeddings with Hard ...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...