资源论文Learning Time/Memory-Efficient Deep Architectures with Budgeted Super Networks

Learning Time/Memory-Efficient Deep Architectures with Budgeted Super Networks

2019-10-18 | |  84 |   54 |   0
Abstract We propose to focus on the problem of discovering neural network architectures efficient in terms of both prediction quality and cost. For instance, our approach is able to solve the following tasks: learn a neural network able to predict well in less than 100 milliseconds or learn an effi- cient model that fits in a 50 Mb memory. Our contribution is a novel family of models called Budgeted Super Networks (BSN). They are learned using gradient descent techniques applied on a budgeted learning objective function which integrates a maximum authorized cost, while making no assumption on the nature of this cost. We present a set of experiments on computer vision problems and analyze the ability of our technique to deal with three different costs: the computation cost, the memory consumption cost and a distributed computation cost. We particularly show that our model can discover neural network architectures that have a better accuracy than the ResNet and Convolutional Neural Fabrics architectures on CIFAR-10 and CIFAR-100, at a lower cost

上一篇:Learning Strict Identity Mappings in Deep Residual Networks

下一篇:Learning to Compare: Relation Network for Few-Shot Learning

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...