资源论文Mesoscopic Facial Geometry Inference Using Deep Neural Networks

Mesoscopic Facial Geometry Inference Using Deep Neural Networks

2019-10-18 | |  119 |   59 |   0
Abstract We present a learning-based approach for synthesizing facial geometry at medium and fine scales from diffusely-lit facial texture maps. When applied to an image sequence, the synthesized detail is temporally coherent. Unlike current state-of-the-art methods [17, 5], which assume ”dark is deep”, our model is trained with measured facial detail collected using polarized gradient illumination in a Light Stage [20]. This enables us to produce plausible facial detail across the entire face, including where previous approaches may incorrectly interpret dark features as concavities such as at moles, hair stubble, and occluded pores. Instead of directly inferring 3D geometry, we propose to encode fine details in high-resolution displacement maps which are learned through a hybrid network adopting the state-of-the-art image-to-image translation network [29] and super resolution network [43]. To effectively capture geometric detail at both mid- and high frequencies, we factorize the learning into two separate sub-networks, enabling the full range of facial detail to be modeled. Results from our learning-based approach compare favorably with a high-quality active facial scanhening technique, and require only a single passive lighting condition without a complex scanning setup

上一篇:MAttNet: Modular Attention Network for Referring Expression Comprehension

下一篇:Missing Slice Recovery for Tensors Using a Low-rank Model in Embedded Space

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...