资源论文Towards Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study

Towards Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study

2019-10-22 | |  50 |   33 |   0
Abstract. This paper aims to improve privacy-preserving visual recognition, an increasingly demanded feature in smart camera applications, by formulating a unique adversarial training framework. The proposed framework explicitly learns a degradation transform for the original video inputs, in order to optimize the trade-off between target task performance and the associated privacy budgets on the degraded video. A notable challenge is that the privacy budget, often defined and measured in task-driven contexts, cannot be reliably indicated using any single model performance, because a strong protection of privacy has to sustain against any possible model that tries to hack privacy information. Such an uncommon situation has motivated us to propose two strategies, i.e., budget model restarting and ensemble, to enhance the generalization of the learned degradation on protecting privacy against unseen hacker models. Novel training strategies, evaluation protocols, and result visualization methods have been designed accordingly. Two experiments on privacy-preserving action recognition, with privacy budgets defined in various ways, manifest the compelling effectiveness of the proposed framework in simultaneously maintaining high target task (action recognition) performance while suppressing the privacy breach risk. The code is available at https://github.com/wuzhenyusjtu/Privacy-AdversarialLearning

上一篇:Graph Adaptive Knowledge Transfer for Unsupervised Domain Adaptation

下一篇:GridFace: Face Rectification via Learning Local Homography Transformations

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...