资源论文Visual Coreference Resolution in Visual Dialog using Neural Module Networks

Visual Coreference Resolution in Visual Dialog using Neural Module Networks

2019-10-22 | |  50 |   48 |   0
Abstract. Visual dialog entails answering a series of questions grounded in an image, using dialog history as context. In addition to the challenges found in visual question answering (VQA), which can be seen as oneround dialog, visual dialog encompasses several more. We focus on one such problem called visual coreference resolution that involves determining which words, typically noun phrases and pronouns, co-refer to the same entity/object instance in an image. This is crucial, especially for pronouns (e.g., ‘it’), as the dialog agent must first link it to a previous coreference (e.g., ‘boat’), and only then can rely on the visual grounding of the coreference ‘boat’ to reason about the pronoun ‘it’. Prior work (in visual dialog) models visual coreference resolution either (a) implicitly via a memory network over history, or (b) at a coarse level for the entire question; and not explicitly at a phrase level of granularity. In this work, we propose a neural module network architecture for visual dialog by introducing two novel modules—Refer and Exclude—that perform explicit, grounded, coreference resolution at a finer word level. We demonstrate the effectiveness of our model on MNIST Dialog, a visually simple yet coreference-wise complex dataset, by achieving near perfect accuracy, and on VisDial, a large and challenging visual dialog dataset on real images, where our model outperforms other approaches, and is more interpretable, grounded, and consistent qualitatively

上一篇:Objects that Sound

下一篇:License Plate Detection and Recognition in Unconstrained Scenarios

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...

  • Shape-based Autom...

    We present an algorithm for automatic detection...