资源论文Deep Structure Inference Network for FacialAction Unit Recognition

Deep Structure Inference Network for FacialAction Unit Recognition

2019-10-22 | |  60 |   65 |   0
Abstract. Facial expressions are combinations of basic components called Action Units (AU). Recognizing AUs is key for general facial expression analysis. Recently, efforts in automatic AU recognition have been dedicated to learning combinations of local features and to exploiting correlations between AUs. We propose a deep neural architecture that tackles both problems by combining learned local and global features in its initial stages and replicating a message passing algorithm between classes similar to a graphical model inference approach in later stages. We show that by training the model end-to-end with increased supervision we improve state-of-the-art by 5.3% and 8.2% performance on BP4D and DISFA datasets, respectively.

上一篇:Graininess-Aware Deep Feature Learning forPedestrian Detection

下一篇:Deep Burst Denoising

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...