资源论文Structure-from-Motion-Aware PatchMatchfor Adaptive Optical Flow Estimation

Structure-from-Motion-Aware PatchMatchfor Adaptive Optical Flow Estimation

2019-10-22 | |  58 |   50 |   0
Abstract. Many recent energy-based methods for optical flow estimation rely on a good initialization that is typically provided by some kind of feature matching. So far, however, these initial matching approaches are rather general: They do not incorporate any additional information that could help to improve the accuracy or the robustness of the estimation. In particular, they do not exploit potential cues on the camera poses and the thereby induced rigid motion of the scene. In the present paper, we tackle this problem. To this end, we propose a novel structurefrom-motion-aware PatchMatch approach that, in contrast to existing matching techniques, combines two hierarchical feature matching methods: a recent two-frame PatchMatch approach for optical flow estimation (general motion) and a specifically tailored three-frame PatchMatch approach for rigid scene reconstruction (SfM). While the motion PatchMatch serves as baseline with good accuracy, the SfM counterpart takes over at occlusions and other regions with insufficient information. Experiments with our novel SfM-aware PatchMatch approach demonstrate its usefulness. They not only show excellent results for all major benchmarks (KITTI 2012/2015, MPI Sintel), but also improvements up to 50% compared to a PatchMatch approach without structure information

上一篇:Improving DNN Robustness to AdversarialAttacks using Jacobian Regularization

下一篇:CubeNet: Equivariance to 3D Rotationand Translation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...