资源论文Real-time ‘Actor-Critic’ Tracking

Real-time ‘Actor-Critic’ Tracking

2019-10-23 | |  75 |   41 |   0
Abstract. In this work, we propose a novel tracking algorithm with real-time performance based on the ‘Actor-Critic’ framework. This framework consists of two major components: ‘Actor’ and ‘Critic’. The ‘Actor’ model aims to infer the optimal choice in a continuous action space, which directly makes the tracker move the bounding box to the object’s location in the current frame. For offline training, the ‘Critic’ model is introduced to form a ‘Actor-Critic’ framework with reinforcement learning and outputs a Q-value to guide the learning process of both ‘Actor’ and ‘Critic’ deep networks. Then, we modify the original deep deterministic policy gradient algorithm to effectively train our ‘Actor-Critic’ model for the tracking task. For online tracking, the ‘Actor’ model provides a dynamic search strategy to locate the tracked object efficiently and the ‘Critic’ model acts as a verification module to make our tracker more robust. To the best of our knowledge, this work is the first attempt to exploit the continuous action and ‘Actor-Critic’ framework for visual tracking. Extensive experimental results on popular benchmarks demonstrate that the proposed tracker performs favorably against many state-of-the-art methods, with real-time performance

上一篇:Cross-Modal and Hierarchical Modeling of Video and Text

下一篇:A Dataset for Lane Instance Segmentation in Urban Environments

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...