资源论文Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

2019-10-23 | |  70 |   48 |   0
Abstract. This work presents a method for adapting a single, fixed deep neural network to multiple tasks without affecting performance on already learned tasks. By building upon ideas from network quantization and pruning, we learn binary masks that “piggyback” on an existing network, or are applied to unmodified weights of that network to provide good performance on a new task. These masks are learned in an end-toend differentiable fashion, and incur a low overhead of 1 bit per network parameter, per task. Even though the underlying network is fixed, the ability to mask individual weights allows for the learning of a large number of filters. We show performance comparable to dedicated fine-tuned networks for a variety of classification tasks, including those with large domain shifts from the initial task (ImageNet), and a variety of network architectures. Our performance is agnostic to task ordering and we do not suffer from catastrophic forgetting or competition between tasks

上一篇:A Style-Aware Content Loss for Real-time HD Style Transfer

下一篇:Understanding Degeneracies and Ambiguities in Attribute Transfer

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...