资源论文Few-Shot Human Motion Prediction via Meta-Learning

Few-Shot Human Motion Prediction via Meta-Learning

2019-10-23 | |  64 |   45 |   0
Abstract. Human motion prediction, forecasting human motion in a few milliseconds conditioning on a historical 3D skeleton sequence, is a long-standing problem in computer vision and robotic vision. Existing forecasting algorithms rely on extensive annotated motion capture data and are brittle to novel actions. This paper addresses the problem of few-shot human motion prediction, in the spirit of the recent progress on few-shot learning and meta-learning. More precisely, our approach is based on the insight that having a good generalization from few examples relies on both a generic initial model and an effective strategy for adapting this model to novel tasks. To accomplish this, we propose proactive and adaptive meta-learning (PAML) that introduces a novel combination of model-agnostic meta-learning and model regression networks and unifies them into an integrated, end-to-end framework. By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks, while effectively adapting this model for use as a task-specific one by leveraging learningto-learn knowledge about how to transform few-shot model parameters to many-shot model parameters. The resulting PAML predictor model significantly improves the prediction performance on the heavily benchmarked H3.6M dataset in the small-sample size regime

上一篇:Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

下一篇:Sparsely Aggregated Convolutional Networks

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...