资源论文Exploiting Vector Fields for Geometric Rectification of Distorted Document Images

Exploiting Vector Fields for Geometric Rectification of Distorted Document Images

2019-10-23 | |  51 |   48 |   0
Abstract. This paper proposes a segment-free method for geometric rectification of a distorted document image captured by a hand-held camera. The method can recover the 3D page shape by exploiting the intrinsic vector fields of the image. Based on the assumption that the curled page shape is a general cylindrical surface, we estimate the parameters related to the camera and the 3D shape model through weighted majority voting on the vector fields. Then the spatial directrix of the surface is recovered by solving an ordinary differential equation (ODE) through the Euler method. Finally, the geometric distortions in images can be rectified by flattening the estimated 3D page surface onto a plane. Our method can exploit diverse types of visual cues available in a distorted document image to estimate its vector fields for 3D page shape recovery. In comparison to the state-of-the-art methods, the great advantage is that it is a segment-free method and does not have to extract curved text lines or textual blocks, which is still a very challenging problem especially for a distorted document image. Our method can therefore be freely applied to document images with extremely complicated page layouts and severe image quality degradation. Extensive experiments are implemented to demonstrate the effectiveness of the proposed method

上一篇:Question-Guided Hybrid Convolution for Visual Question Answering

下一篇:Deep Metric Learning with Hierarchical Triplet Loss

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...