资源论文Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation Maximization

Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation Maximization

2019-10-23 | |  60 |   36 |   0
Abstract. In this paper, we make two contributions to unsupervised domain adaptation (UDA) using the convolutional neural network (CNN). First, our approach transfers knowledge in all the convolutional layers through attention alignment. Most previous methods align high-level representations, e.g., activations of the fully connected (FC) layers. In these methods, however, the convolutional layers which underpin critical lowlevel domain knowledge cannot be updated directly towards reducing domain discrepancy. Specifically, we assume that the discriminative regions in an image are relatively invariant to image style changes. Based on this assumption, we propose an attention alignment scheme on all the target convolutional layers to uncover the knowledge shared by the source domain. Second, we estimate the posterior label distribution of the unlabeled data for target network training. Previous methods, which iteratively update the pseudo labels by the target network and refine the target network by the updated pseudo labels, are vulnerable to label estimation errors. Instead, our approach uses category distribution to calculate the cross-entropy loss for training, thereby ameliorating the error accumulation of the estimated labels. The two contributions allow our approach to outperform the state-of-the-art methods by +2.6% on the Office-31 dataset

上一篇:Zoom-Net: Mining Deep Feature Interactions for Visual Relationship Recognition

下一篇:SegStereo: Exploiting Semantic Information for Disparity Estimation

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...