资源论文Linear RGB-D SLAM for Planar Environments

Linear RGB-D SLAM for Planar Environments

2019-10-24 | |  63 |   48 |   0
Abstract. We propose a new formulation for including orthogonal planar features as a global model into a linear SLAM approach based on sequential Bayesian filtering. Previous planar SLAM algorithms estimate the camera poses and multiple landmark planes in a pose graph optimization. However, since it is formulated as a high dimensional nonlinear optimization problem, there is no guarantee the algorithm will converge to the global optimum. To overcome these limitations, we present a new SLAM method that jointly estimates camera position and planar landmarks in the map within a linear Kalman filter framework. It is rotations that make the SLAM problem highly nonlinear. Therefore, we solve for the rotational motion of the camera using structural regularities in the Manhattan world (MW), resulting in a linear SLAM formulation. We test our algorithm on standard RGB-D benchmarks as well as additional large indoor environments, demonstrating comparable performance to other state-of-the-art SLAM methods without the use of expensive nonlinear optimization

上一篇:Quadtree Convolutional Neural Networks

下一篇:A Hybrid Model for Identity Obfuscation by Face Replacement

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...