资源论文Depth Estimation via Affinity Learned with Convolutional Spatial Propagation Network

Depth Estimation via Affinity Learned with Convolutional Spatial Propagation Network

2019-10-24 | |  167 |   57 |   0
Abstract. Depth estimation from a single image is a fundamental problem in computer vision. In this paper, we propose a simple yet effective convolutional spatial propagation network (CSPN) to learn the affinity matrix for depth prediction. Specifically, we adopt an efficient linear propagation model, where the propagation is performed with a manner of recurrent convolutional operation, and the affinity among neighboring pixels is learned through a deep convolutional neural network (CNN). We apply the designed CSPN to two depth estimation tasks given a single image: (1) Refine the depth output from existing state-of-the-art (SOTA) methods; (2) Convert sparse depth samples to a dense depth map by embedding the depth samples within the propagation procedure. The second task is inspired by the availability of LiDAR that provides sparse but accurate depth measurements. We experimented the proposed CSPN over the popular NYU v2 [1] and KITTI [2] datasets, where we show that our proposed approach improves not only quality (e.g., 30% more reduction in depth error), but also speed (e.g., 2 to 5× faster) of depth maps than previous SOTA methods. The codes of CSPN are available at: https://github.com/XinJCheng/CSPN.

上一篇:Triplet Loss in Siamese Network for Object Tracking

下一篇:Scale Aggregation Network for Accurate and Efficient Crowd Counting

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...