资源论文Towards Robust Neural Networks via Random Self-ensemble

Towards Robust Neural Networks via Random Self-ensemble

2019-10-24 | |  45 |   35 |   0
Abstract. Recent studies have revealed the vulnerability of deep neural networks: A small adversarial perturbation that is imperceptible to human can easily make a well-trained deep neural network misclassify. This makes it unsafe to apply neural networks in security-critical applications. In this paper, we propose a new defense algorithm called Random SelfEnsemble (RSE) by combining two important concepts: randomness and ensemble. To protect a targeted model, RSE adds random noise layers to the neural network to prevent the strong gradient-based attacks, and ensembles the prediction over random noises to stabilize the performance. We show that our algorithm is equivalent to ensemble an ininite number of noisy models f? without any additional memory overhead, and the proposed training procedure based on noisy stochastic gradient descent can ensure the ensemble model has a good predictive capability. Our algorithm signiicantly outperforms previous defense techniques on real data sets. For instance, on CIFAR-10 with VGG network (which has 92% accuracy without any attack), under the strong C&W attack within a certain distortion tolerance, the accuracy of unprotected model drops to less than 10%, the best previous defense technique has 48% accuracy, while our method still has 86% prediction accuracy under the same level of attack. Finally, our method is simple and easy to integrate into any neural network

上一篇:Focus, Segment and Erase: An Efficient Network for Multi-Label Brain Tumor Segmentation

下一篇:Quaternion Convolutional Neural Networks

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...