资源论文Learning Efficient Single-stage Pedestrian Detectors by Asymptotic Localization Fitting

Learning Efficient Single-stage Pedestrian Detectors by Asymptotic Localization Fitting

2019-10-24 | |  43 |   36 |   0
Abstract. Though Faster R-CNN based two-stage detectors have witnessed significant boost in pedestrian detection accuracy, it is still slow for practical applications. One solution is to simplify this working flow as a single-stage detector. However, current single-stage detectors (e.g. SSD) have not presented competitive accuracy on common pedestrian detection benchmarks. This paper is towards a successful pedestrian detector enjoying the speed of SSD while maintaining the accuracy of Faster R-CNN. Specifically, a structurally simple but effective module called Asymptotic Localization Fitting (ALF) is proposed, which stacks a series of predictors to directly evolve the default anchor boxes of SSD step by step into improving detection results. As a result, during training the latter predictors enjoy more and better-quality positive samples, meanwhile harder negatives could be mined with increasing IoU thresholds. On top of this, an efficient single-stage pedestrian detection architecture (denoted as ALFNet) is designed, achieving stateof-the-art performance on CityPersons and Caltech, two of the largest pedestrian detection benchmarks, and hence resulting in an attractive pedestrian detector in both accuracy and speed. Code is available at https://github.com/VideoObjectSearch/ALFNet

上一篇:PSDF Fusion: Probabilistic Signed Distance Function for On-the-fly 3D Data Fusion and Scene Reconstruction

下一篇:Deeply Learned Compositional Models for Human Pose Estimation

用户评价
全部评价

热门资源

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...