资源论文Learning Compression from Limited Unlabeled Data

Learning Compression from Limited Unlabeled Data

2019-10-24 | |  38 |   34 |   0
Abstract. Convolutional neural networks (CNNs) have dramatically advanced the state-of-art in a number of domains. However, most models are both computation and memory intensive, which arouse the interest of network compression. While existing compression methods achieve good performance, they suffer from three limitations: 1) the inevitable retraining with enormous labeled data; 2) the massive GPU hours for retraining; 3) the training tricks for model compression. Especially the requirement of retraining on original datasets makes it difficult to apply in many real-world scenarios, where training data is not publicly available. In this paper, we reveal that re-normalization is the practical and effective way to alleviate the above limitations. Through quantization or pruning, most methods may compress a large number of parameters but ignore the core role in performance degradation, which is the Gaussian conjugate prior induced by batch normalization. By employing the re-estimated statistics in batch normalization, we significantly improve the accuracy of compressed CNNs. Extensive experiments on ImageNet show it outperforms baselines by a large margin and is comparable to label-based methods. Besides, the fine-tuning process takes less than 5 minutes on CPU, using 1000 unlabeled images

上一篇:Attention-aware Deep Adversarial Hashing for Cross-Modal Retrieval

下一篇:Rendering Portraitures from Monocular Camera and Beyond

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...