资源论文PARN: Pyramidal Affine Regression Networks for Dense Semantic Correspondence

PARN: Pyramidal Affine Regression Networks for Dense Semantic Correspondence

2019-10-25 | |  72 |   55 |   0
Abstract. This paper presents a deep architecture for dense semantic correspondence, called pyramidal affine regression networks (PARN), that estimates locally-varying affine transformation fields across images. To deal with intra-class appearance and shape variations that commonly exist among different instances within the same object category, we leverage a pyramidal model where affine transformation fields are progressively estimated in a coarse-to-fine manner so that the smoothness constraint is naturally imposed within deep networks. PARN estimates residual affine transformations at each level and composes them to estimate final affine transformations. Furthermore, to overcome the limitations of insufficient training data for semantic correspondence, we propose a novel weakly-supervised training scheme that generates progressive supervisions by leveraging a correspondence consistency across image pairs. Our method is fully learnable in an end-to-end manner and does not require quantizing infinite continuous affine transformation fields. To the best of our knowledge, it is the first work that attempts to estimate dense affine transformation fields in a coarse-to-fine manner within deep networks. Experimental results demonstrate that PARN outperforms the state-of-the-art methods for dense semantic correspondence on various benchmarks.

上一篇:CBAM: Convolutional Block Attention Module

下一篇:Sidekick Policy Learning for Active Visual Exploration

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...