资源论文Deep Directional Statistics: Pose Estimation with Uncertainty Quantification

Deep Directional Statistics: Pose Estimation with Uncertainty Quantification

2019-10-25 | |  80 |   42 |   0
Abstract. Modern deep learning systems successfully solve many perception tasks such as object pose estimation when the input image is of high quality. However, in challenging imaging conditions such as on low resolution images or when the image is corrupted by imaging artifacts, current systems degrade considerably in accuracy. While a loss in performance is unavoidable, we would like our models to quantify their uncertainty to achieve robustness against images of varying quality. Probabilistic deep learning models combine the expressive power of deep learning with uncertainty quantification. In this paper we propose a novel probabilistic deep learning model for the task of angular regression. Our model uses von Mises distributions to predict a distribution over object pose angle. Whereas a single von Mises distribution is making strong assumptions about the shape of the distribution, we extend the basic model to predict a mixture of von Mises distributions. We show how to learn a mixture model using a finite and infinite number of mixture components. Our model allows for likelihood-based training and efficient inference at test time. We demonstrate on a number of challenging pose estimation datasets that our model produces calibrated probability predictions and competitive or superior point estimates compared to the current state-of-the-art

上一篇:Deep Pictorial Gaze Estimation

下一篇:Self-supervised Knowledge Distillation Using Singular Value Decomposition

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...