资源论文AugGAN: Cross Domain Adaptation with GAN-based Data Augmentation

AugGAN: Cross Domain Adaptation with GAN-based Data Augmentation

2019-10-25 | |  90 |   48 |   0
Abstract. Deep learning based image-to-image translation methods aim at learning the joint distribution of the two domains and finding transformations between them. Despite recent GAN (Generative Adversarial Network) based methods have shown compelling results, they are prone to fail at preserving image-objects and maintaining translation consistency, which reduces their practicality on tasks such as generating largescale training data for different domains. To address this problem, we purpose a structure-aware image-to-image translation network, which is composed of encoders, generators, discriminators and parsing nets for the two domains, respectively, in a unified framework. The purposed network generates more visually plausible images compared to competing methods on different image-translation tasks. In addition, we quantitatively evaluate different methods by training Faster-RCNN and YOLO with datasets generated from the image-translation results and demonstrate significant improvement on the detection accuracies by using the proposed image-object preserving network

上一篇:CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

下一篇:Boosted Attention: Leveraging Human Attention for Image Captioning

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...