资源论文Deblurring Natural Image Using Super-Gaussian Fields

Deblurring Natural Image Using Super-Gaussian Fields

2019-10-25 | |  47 |   39 |   0
Abstract. Blind image deblurring is a challenging problem due to its ill-posed nature, of which the success is closely related to a proper image prior. Although a large number of sparsity-based priors, such as the sparse gradient prior, have been successfully applied for blind image deblurring, they inherently suffer from several drawbacks, limiting their applications. Existing sparsity-based priors are usually rooted in modeling the response of images to some specific filters (e.g., image gradients), which are insufficient to capture the complicated image structures. Moreover, the traditional sparse priors or regularizations model the filter response (e.g., image gradients) independently and thus fail to depict the longrange correlation among them. To address the above issues, we present a novel image prior for image deblurring based on a Super-Gaussian field model with adaptive structures. Instead of modeling the response of the fixed short-term filters, the proposed Super-Gaussian fields capture the complicated structures in natural images by integrating potentials on all cliques (e.g., centring at each pixel) into a joint probabilistic distribution. Considering that the fixed filters in different scales are impractical for the coarse-to-fine framework of image deblurring, we define each potential function as a super-Gaussian distribution. Through this definition, the partition function, the curse for traditional MRFs, can be theoretically ignored, and all model parameters of the proposed Super-Gaussian fields can be data-adaptively learned and inferred from the blurred observation with a variational framework. Extensive experiments on both blind deblurring and non-blind deblurring demonstrate the effectiveness of the proposed method.

上一篇:Action Anticipation with RBF Kernelized Feature Mapping RNN

下一篇:Monocular Depth Estimation with Ainity, Vertical Pooling, and Label Enhancement

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...