资源论文Less Is More: Picking Informative Frames for Video Captioning

Less Is More: Picking Informative Frames for Video Captioning

2019-10-25 | |  53 |   52 |   0
Abstract. In video captioning task, the best practice has been achieved by attentionbased models which associate salient visual components with sentences in the video. However, existing study follows a common procedure which includes a frame-level appearance modeling and motion modeling on equal interval frame sampling, which may bring about redundant visual information, sensitivity to content noise and unnecessary computation cost. We propose a plug-and-play PickNet to perform informative frame picking in video captioning. Based on a standard encoder-decoder framework, we develop a reinforcement-learningbased procedure to train the network sequentially, where the reward of each frame picking action is designed by maximizing visual diversity and minimizing discrepancy between generated caption and the ground-truth. The rewarded candidate will be selected and the corresponding latent representation of encoderdecoder will be updated for future trials. This procedure goes on until the end of the video sequence. Consequently, a compact frame subset can be selected to represent the visual information and perform video captioning without performance degradation. Experiment results show that our model can achieve competitive performance across popular benchmarks while only 6?8 frames are used

上一篇:Question Type Guided Attention in Visual Question Answering

下一篇:Does Haze Removal Help CNN-based Image Classification?

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...