资源论文Nonparametric Online Machine Learning with Kernels

Nonparametric Online Machine Learning with Kernels

2019-10-29 | |  59 |   43 |   0
Abstract Max-margin and kernel methods are dominant approaches to solve many tasks in machine learning. However, the paramount question is how to solve model selection problem in these methods. It becomes urgent in online learning context. Grid search is a common approach, but it turns out to be highly problematic in real-world applications. Our approach is to view max-margin and kernel methods under a Bayesian setting, then use Bayesian inference tools to learn model parameters and infer hyper-parameters in principle ways for both batch and online setting

上一篇:Multi-Agent Systems of Inverse Reinforcement Learners in Complex Games

下一篇:On Thompson Sampling and Asymptotic Optimality?

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...