资源论文Nonparametric Online Machine Learning with Kernels

Nonparametric Online Machine Learning with Kernels

2019-10-29 | |  104 |   100 |   0
Abstract Max-margin and kernel methods are dominant approaches to solve many tasks in machine learning. However, the paramount question is how to solve model selection problem in these methods. It becomes urgent in online learning context. Grid search is a common approach, but it turns out to be highly problematic in real-world applications. Our approach is to view max-margin and kernel methods under a Bayesian setting, then use Bayesian inference tools to learn model parameters and infer hyper-parameters in principle ways for both batch and online setting

上一篇:Multi-Agent Systems of Inverse Reinforcement Learners in Complex Games

下一篇:On Thompson Sampling and Asymptotic Optimality?

用户评价
全部评价

热门资源

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Supervised Descen...

    Many computer vision problems (e.

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...