资源论文an improved approximation algorithm for the subpath planning problem and its generalization

an improved approximation algorithm for the subpath planning problem and its generalization

2019-10-30 | |  56 |   45 |   0
Abstract eling salesman problem (TSP), called the subpath planning problem (SPP). Given 2n vertices and n independent edges on a metric space, we aim to find a shortest tour that contains all the edges. SPP is one of the fundamental problems in both artificial intelligence and robotics. Our main result is to design a 1.5-approximation algorithm that runs in polynomial time, improving the currently best approximation algorithm. The idea is direct use of techniques developed for TSP. In addition, we propose a generalization of SPP called the subgroup planning problem (SGPP). In this problem, we are given a set of disjoint groups of vertices, and we aim to find a shortest tour such that all the vertices in each group are traversed sequentially. We propose a 3-approximation algorithm for SGPP. We also conduct numerical experiments. Compared with previous algorithms, our algorithms improve the solution quality by more than 10% for large instances with more than 10,000 vertices.

上一篇:basket sensitive personalized item recommendation

下一篇:robust softmax regression for multi class classification with self paced learning

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...