资源论文focused depth first proof number search using convolutional neural networks for the game of hex

focused depth first proof number search using convolutional neural networks for the game of hex

2019-10-30 | |  53 |   47 |   0
Abstract Proof Number search (PNS) is an effective algorithm for searching theoretical values on games with non-uniform branching factors. Focused depth-first proof number search (FDFPN) with dynamic widening was proposed for Hex where the branching factor is nearly uniform. However, FDFPN is fragile to its heuristic move ordering function. The recent advances of Convolutional Neural Networks (CNNs) have led to considerable progress in game playing. We investigate how to incorporate the strength of CNNs into solving, with application to the game of Hex. We describe FDFPN-CNN, a new focused DFPN search that uses convolutional neural networks. FDFPN-CNN integrates two CNNs trained from games played by expert players. The value approximation CNN provides reliable information for defining the widening size by estimating the value of the node to expand, while the policy CNN selects promising children nodes to the search. On 8x8 Hex, experimental results show FDFPN-CNN performs notably better than FDFPN, suggesting a promising direction for better solving Hex positions where learning from strong players is possible.

上一篇:proposing a highly accurate hybrid component based factorised preference model in recommender systems

下一篇:random shifting for cnn a solution to reduce information loss in down sampling layers

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...