资源论文value iteration networks

value iteration networks

2019-10-31 | |  84 |   57 |   0

Abstract fully differentiable neural network with a ‘planning module’ embedded within. VINs can learn to plan, and are suitable for predicting outcomes that involve planning-based reasoning, such as policies for reinforcement learning. Key to our approach is a novel differentiable approximation of the value-iteration algorithm, which can be represented as a convolutional neural network, and trained end-to-end using standard backpropagation. We evaluate VIN based policies on discrete and continuous path-planning domains, and on a natural-language based search task. We show that by learning an explicit planning computation, VIN policies generalize better to new, unseen domains. This paper is a significantly abridged and IJCAI audience targeted version of the original NIPS 2016 paper with the same title, available here: https: //arxiv.org/abs/1602.02867

上一篇:fuzzy logic model for digital forensics a trade off between accuracy complexity and interpretability

下一篇:A Density-Based Nonparametric Model for Online Event Discovery from the Social Media Data

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...

  • Shape-based Autom...

    We present an algorithm for automatic detection...