资源论文improved neural machine translation with source syntax

improved neural machine translation with source syntax

2019-10-31 | |  41 |   29 |   0
Abstract Neural Machine Translation (NMT) based on the encoder-decoder architecture has recently achieved the state-of-the-art performance. Researchers have proven that extending word level attention to phrase level attention by incorporating source-side phrase structure can enhance the attention model and achieve promising improvement. However, word dependencies that can be crucial to correctly understand a source sentence are not always in a consecutive fashion (i.e. phrase structure), sometimes they can be in long distance. Phrase structures are not the best way to explicitly model long distance dependencies. In this paper we propose a simple but effective method to incorporate source-side long distance dependencies into NMT. Our method based on dependency trees enriches each source state with global dependency structures, which can better capture the inherent syntactic structure of source sentences. Experiments on Chinese-English and English-Japanese translation tasks show that our proposed method outperforms state-of-the-art SMT and NMT baselines.

上一篇:joint capped norms minimization for robust matrix recovery

下一篇:ordinal zero shot learning

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...