资源算法s2cnn

s2cnn

2019-09-12 | |  241 |   0 |   0

|

Spherical CNNs

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

fig.jpeg

Overview

This library contains a PyTorch implementation of the rotation equivariant CNNs for spherical signals (e.g. omnidirectional images, signals on the globe) as presented in [1]. Equivariant networks for the plane are available here.

Dependencies

  • __PyTorch__: http://pytorch.org/ (>= 0.4.0)

  • __cupy__: https://github.com/cupy/cupy

  • __lie_learn__: https://github.com/AMLab-Amsterdam/lie_learn

  • __pynvrtc__: https://github.com/NVIDIA/pynvrtc

(commands to install all the dependencies on a new conda environment)

conda create --name cuda9 python=3.6 
conda activate cuda9# s2cnn depsconda install pytorch torchvision cuda90 -c pytorch  
conda install -c anaconda cupy  
pip install pynvrtc  

# lie_learn depsconda install -c anaconda cython  
conda install -c anaconda requests  

# shrec17 example depconda install -c anaconda scipy  
conda install -c conda-forge rtree shapely  
conda install -c conda-forge pyembree  
pip install "trimesh[easy]"

Installation

To install, run

$ python setup.py install

Structure

  • __nn__: PyTorch nn.Modules for the S^2 and SO(3) conv layers

  • __ops__: Low-level operations used for computing the G-FFT

  • __examples__: Example code for using the library within a PyTorch project

Usage

Please have a look at the examples.

Please cite [1] in your work when using this library in your experiments.

Feedback

For questions and comments, feel free to contact us: taco.cohen (gmail), geiger.mario (gmail), jonas (argmin.xyz).

License

MIT

References

[1] Taco S. Cohen, Mario Geiger, Jonas Khler, Max Welling, Spherical CNNs. International Conference on Learning Representations (ICLR), 2018.

[2] Taco S. Cohen, Mario Geiger, Jonas Khler, Max Welling, Convolutional Networks for Spherical Signals. ICML Workshop on Principled Approaches to Deep Learning, 2017.

[3] Taco S. Cohen, Mario Geiger, Maurice Weiler, Intertwiners between Induced Representations (with applications to the theory of equivariant neural networks), ArXiv preprint 1803.10743, 2018.

上一篇:CondenseNet

下一篇:tsn-pytorch

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...