资源论文summary multi agent path finding with kinematic constraints

summary multi agent path finding with kinematic constraints

2019-10-31 | |  45 |   38 |   0
Abstract Multi-Agent Path Finding (MAPF) is well studied in both AI and robotics. Given a discretized environment and agents with assigned start and goal locations, MAPF solvers from AI find collision-free paths for hundreds of agents with user-provided sub-optimality guarantees. However, they ignore that actual robots are subject to kinematic constraints (such as velocity limits) and suffer from imperfect plan-execution capabilities. We therefore introduce MAPF-POST to postprocess the output of a MAPF solver in polynomial time to create a plan-execution schedule that can be executed on robots. This schedule works on non-holonomic robots, considers kinematic constraints, provides a guaranteed safety distance between robots, and exploits slack to avoid time-intensive replanning in many cases. We evaluate MAPF-POST in simulation and on differential-drive robots, showcasing the practicality of our approach.

上一篇:exploiting causality for selective belief filtering in dynamic bayesian networks extended abstract

下一篇:incomplete attribute learning with auxiliary labels

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...