资源论文sampling for approximate maximum search in factorized tensor

sampling for approximate maximum search in factorized tensor

2019-10-31 | |  36 |   30 |   0
Abstract Factorization models have been extensively used for recovering the missing entries of a matrix or tensor. However, directly computing all of the entries using the learned factorization models is prohibitive when the size of the matrix/tensor is large. On the other hand, in many applications, such as collaborative filtering, we are only interested in a few entries that are the largest among them. In this work, we propose a sampling-based approach for finding the top entries of a tensor which is decomposed by the CANDECOMP/PARAFAC model. We develop an algorithm to sample the entries with probabilities proportional to their values. We further extend it to make the sampling proportional to the k-th power of the values, amplifying the focus on the top ones. We provide theoretical analysis of the sampling algorithm and evaluate its performance on several real-world data sets. Experimental results indicate that the proposed approach is orders of magnitude faster than exhaustive computing. When applied to the special case of searching in a matrix, it also requires fewer samples than the other state-of-the-art method.

上一篇:thwarting vote buying through decoy ballots

下一篇:achieving coordination in multi agent systems by stable local conventions under community networks

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...