资源论文cardinality encodings for graph optimization problems

cardinality encodings for graph optimization problems

2019-11-01 | |  41 |   36 |   0
Abstract Different optimization problems defined on graphs find application in complex network analysis. Existing propositional encodings render impractical the use of propositional satisfiability (SAT) and maximum satisfiability (MaxSAT) solvers for solving a variety of these problems on large graphs. This paper has two main contributions. First, the paper identifies sources of inefficiency in existing encodings for different optimization problems in graphs. Second, for the concrete case of the maximum clique problem, the paper develops a novel encoding which is shown to be far more compact than existing encodings for large sparse graphs. More importantly, the experimental results show that the proposed encoding enables existing SAT solvers to compute a maximum clique for large sparse networks, often more efficiently than the state of the art.

上一篇:lossy compression of pattern databases using acyclic random hypergraphs

下一篇:svd based screening for the graphical lasso

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...