资源论文Importance-Aware Semantic Segmentation for Autonomous Driving System

Importance-Aware Semantic Segmentation for Autonomous Driving System

2019-11-02 | |  97 |   48 |   0

Abstract Semantic Segmentation (SS) partitions an image into several coherent semantically meaningful parts, and classififies each part into one of the predetermined classes. In this paper, we argue that existing SS methods cannot be reliably applied to autonomous driving system as they ignore the different importance levels of distinct classes for safedriving. For example, pedestrians in the scene are much more important than sky when driving a car, so their segmentations should be as accurate as possible. To incorporate the importance information possessed by various object classes, this paper designs an “Importance-Aware Loss” (IAL) that specififically emphasizes the critical objects for autonomous driving. IAL operates under a hierarchical structure, and the classes with different importance are located in different levels so that they are assigned distinct weights. Furthermore, we derive the forward and backward propagation rules for IAL and apply them to deep neural networks for realizing SS in intelligent driving system. The experiments on CamVid and Cityscapes datasets reveal that by employing the proposed loss function, the existing deep learning models including FCN, SegNet and ENet are able to consistently obtain the improved segmentation results on the pre-defifined important classes for safe-driving

上一篇:Concrete Problems for Autonomous Vehicle Safety: Advantages of Bayesian Deep Learning

下一篇:Aggressive, Tense, or Shy? Identifying Personality Traits from Crowd Videos

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...